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Abstract. We consider the phase transition in the ensemble ofn polymer chains developing
on the halflinex > 1. All chains are independent of each other in all points except the origin
x = 1, where the point well is located. The well depth depends on the number of beads of
different chains simultaneously staying at the pointx = 1. We show that if the well depth grows
faster than3

2n ln n with n, then all chains become localized simultaneously at the origin in the
limit n� 1. In the conclusion we discuss the connection of the above defined problem with the
phase transition in the copolymer chain with a quenched random sequence of monomers using
the replica approach.

0. Introduction

Problems dealing with the localization of polymer chains in potentials of various geometries
compel much attention of both chemists and physicists. For the first group these problems
are naturally connected with creating new materials possessing specific technological
properties (for instance, catalysts [1] or ion-containing and surface-active substances [2]).
Meanwhile, for physicists the consideration of path localization has remained since the 1970s
as the testing ground for developing the new methods to investigate polymer absorption in
different geometries, wetting phenomena and kinetics of chemical reactions.

The phenomenon of polymer chain absorption (without self-interactions) is rather well
understood at present both for homo- [3–7, 15] and heteropolymer [8–14] cases. The
simple diffusion approach [6, 7, 15] provides complete understanding of the absorption of
homopolymer chains as well as of block copolymers in complicated geometries. These
results can also be explained beautifully by scaling estimates [16]. More advanced
renormalization group methods [8] and power-series analysis [10] applied to random chains
with a disordered sequence of links are also widely used and give exhaustive information
about the thermodynamic properties of ideal polymers near the phase transition point from
the delocalized (Gaussian) to the localized (absorbed) regimes. A similar mathematical
formalism has been applied to a phase transition in solid-on-solid (SOS) models with
quenched impurities [17]. Many conclusions obtained by renormalization group (RG)
analysis in [8] correlate with the results in [17].

Problems dealing with 2D wetting in a periodic potential are related to this theme as
well. In [18], using a generalized transfer matrix method, we were able to find the exact
solution for the critical depinning phase transition for an ideal (nonself-avoiding) chain.
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nechaev@landau.ac.ru
‡ Unité de Recherche des Universités Paris XI et Paris VI associée au CNRS.
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Finally, it is worthwhile to mention that the model considered below has some features
of the so-called ‘zero’s range-exclusion process’ [19, 20] arising in connection with
traffic models. Also, similar problems appeared in the course of investigation of the
‘autolocalization’ phenomena [21] and in the theory of multicomponent chemical reactions
on traps immersed in an immobile ‘matrix’ [22, 23].

This paper is organized as follows. In section 1 we formulate the simple model of
‘catalytic absorption’ and put forward the question of our main interest; section 2 is devoted
to the solution of one- and two-chain problems; the phase transition in then-chain model for
n > 2 is treated in section 3; while in section 4 we present conjectures about the connection
of the multiparticle catalytic absorption with the random copolymer absorption at the point
well.

1. Multichain model of catalytic absorption at the point well

Consider the one-dimensional latticeZ+, i.e. the set of integer points on the halflinex > 1,
{x} = {1, 2, 3, . . .}. Taken independentN -step chains onZ+, simultaneously starting at
the pointx = 1. All these paths are free, i.e. they do not interact either with any external
potential, or with each other at any point except the pointx = 1. At x = 1 the interaction
of a given chain with the well is described by the potentialU(x1, x2, . . . , xn) (the index
i ∈ [1, n] lables the different chains):

U(x1, x2, . . . , xn) =



0 if xi 6= 1 for all i ∈ [1, n]

w(1) if xi = 1; xj 6= 1 for all {j 6= i; j ∈ [1, n]}
w(2) if xi = 1, xj = 1; xk 6= 0

for all {k 6= j 6= i; k ∈ [1, n]}
· · ·
w(n) if x1 = 1, x2 = 1, . . . , xn = 1

(1.1)

where

06 w(1) 6 w(2) 6 · · · 6 w(n). (1.2)

The equation (1.1) reflects the fact that the depth of the potential well depends on the
number of different chains’ beadssimultaneouslylocated at the pointx = 1. Let us stress
thatw(i) is the ‘individual’ potential, i.e. the potential per one bead in a cluster ofi particles
simultaneously located at the pointx = 1. The ‘integral’ well depth for the cluster ofi
particles we denote as

U(i) = iw(i).
To avoid possible confusions let us emphasize that we consider only thestatistical

problem dealing with enumeration of different trajectories on the latticeZ+ with appropriate
Boltzmann weights at the boundary. Our problem should not be mixed with theprobabilistic
problem concerning the derivation of the invariant measure for the random walks developed
on the latticeZ+ with appropriate local transition probabilities (see for example [24]). This
probabilistic approach does not deal with the polymer chain statistics and is not regarded in
our paper. The difference between the ‘polymer’ and the ‘random walk’ problems is clearly
shown in [25].

It is very straightforward to derive the recursion relations describing the process under
investigation. Consider the partition function (the number of trajectories),ZN(xi), of some
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arbitraryN -step path on the halflinexi ∈ [1,∞) starting at the pointx = 1 and ending at
the pointxi (xi ∈ Z+). The functionZN(xi) satisfies the equations,

ZN+1(xi) = ZN(xi + 1)+ ZN(xi − 1) (xi > 2)

ZN+1(xi) = eU(x1,...,xi ,...,xn)ZN(xi + 1) (xi = 1)

ZN(xi) = 0 (xi 6 0)

ZN=0(xi) = δxi ,1.

(1.3)

The same recursion relations as equation (1.3) should be written for all functionsZN(xi)

wherei ∈ [1, n] and the potentialU(x1, . . . , xi, . . . , xn) is defined in equation (1.1).
We are interested in the situation when different chains onZ+ are very large (n � 1)

and the number of steps of each chain tends to infinity (N →∞).
We expect that in the thermodynamic limitN → ∞ and for n � 1 the absorption

transition into a localized state at the pointx = 1 is sensitive to the shape of the function
w(n). Namely, if w(n) grows rather slow withn (for the precise criteria of the growth
see section 3) we could expect that the phase transitions occur in each individual chain
independently; while ifw(n) is rather a sharp function ofn, various types ofcollective
localizations are expected. The interplay between the entropy loss and the energy gain in
the localized states makes the phase behaviour of the system under consideration extremely
rich.

The most attention in our work is paid to determination of the critical shape of the
functionw(n) at which the localization transition occurs simultaneously in alln (n→∞)
random walks.

It could be useful to define precisely what we mean under the ‘localization’ of the
polymer chain. LetF(N) = lnZ(N) be the free energy of theN -step path on the halfline
Z+ with the point well of depthU at the pointx = 1. This model can be described via the
recursion relation with specific boundary conditions (cf equation (1.3)). It is known that
there exists some critical valueU = Ucr > 0 which separates two different behaviours of
the free energy:

lim
N→∞

1

N
[F(N)− F0(N)] =

{
0 for U < Ucr

3 > 0 for U > Ucr
(1.4)

whereF0(N) = N ln 2 is the trivial part associated with the total number of trajectories on
Z+.

The valueUcr we call the ‘localization transition point’. It signals the separation of
the highest eigenvalue3 from the continous spectrum of our recursion relation for given
boundary conditions (see appendix A for some details).

2. Exact solutions of the catalytic absorption model forn = {1, 2}

2.1. Solution forn = 1

Let us start with the simplest situation whenn = 1, i.e. we have a single chain onZ+
interacting with the potential well at the origin, i.e. the problem of a ‘polymer absorption’.

In this case equations (1.1)–(1.3) degenerate to the following:

U(x) =
{

0 if x 6= 1

w(1) if x = 1
(2.1)
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and 
ZN+1(x) = ZN(x + 1)+ ZN(x − 1) (x > 2)

ZN+1(x) = eU(x) ZN(x + 1) (x = 1)

ZN(x) = 0 (x 6 0)

ZN=0(x) = δx,1.

(2.2)

The solution of the one-particle problem is very straightforward. The equations (2.2)
can be rewritten as follows:

ZN+1(x) = ZN(x − 1)+ ZN(x + 1)+ δx,1(ew(1) − 1)ZN(x + 1) (x > 1) (2.3)

completed by the boundaryZN(x = 0) = 0 and initialZN=0(x) = δx,1 conditions.
Perform the substitution

ZN(x) = 2NZN(x). (2.4)

Comparing (2.4) with (1.4) we see thatF(N) − F0(N) = lnZN . Let us use now the
Fourier–Laplace transform

Z̃(q, s) =
∞∑
N=0

sN
∞∑
x=0

sin
πxq

l
ZN(x)

and introduce the new variablek = πq

l
. After simple algebra we arrive at the following

integral equation for the functioñZN(k, s):
1

s
Z̃(k, s)− 1

s
sink = cosk Z̃(k, s)+ sink (ew(1) − 1)

1

π

∫ π

0
dk sin 2k Z̃(k, s) (2.5)

which leads to the following expression:

Z(x = 2, s) ≡ 1

π

∫ π

0
dk sin 2k Z̃(k, s) =

1
π

∫ π
0 dk sink sin 2k

1−s cosk

1− s(ew(1) − 1) 1
π

∫ π
0 dk sink sin 2k

1−s cosk

. (2.6)

The divergence of the function1
π

∫ π
0 dk sin 2k Z̃(k, s) occurs when the denominator in

equation (2.6) is set to zero:

ew
(1)
cr − 1= 1

s 1
π

∫ π
0 dk sink sin 2k

1−s cosk

∣∣∣∣
s→1

→ 1. (2.7)

This equation determines the critical valuew(1) ≡ w(1)cr which corresponds to the localization
transition point. Thus, in the thermodynamic limitN → ∞ (i.e. whens → 1) we have
w(1)cr = ln 2. In appendix A we recall briefly some relevant information concerning the
origin of second-order phase transitions.

2.2. Solution forn = 2

2.2.1. General ansatz.Consider now two different paths on the halfline, simultaneously
developing in ‘time’ t (1 6 t 6 N ). These chains are independent of each other at all
pointsx = {2, 3, . . .} except the pointx = 1. Let us call the current coordinates of the first
and the second pathsx1(t) andx2(t) correspondingly. The potential (equation (1.1)) now
reads

U(x1, x2) =


0 if x1 6= 1 andx2 6= 1

w(1) if {x1 = 1 andx2 6= 1} or {x1 6= 1 andx2 = 0}
w(2) if x1 = 1 andx2 = 1 .

(2.8)
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Thus, effectively we have thesingle trajectory in two dimensions developing in the first
quarter of the(x1, x2)-plane with specific boundary conditions. In order to simplify the
corresponding equations, it is very convenient to choose the embedding lattice as shown in
figure 1. The equations for the joint partition function,ZN(x1, x2), in the two-dimensional
(2D) case (forn = 2) become slightly more tricky than in the one-dimensional (1D) case
(for n = 1).

We can derive the recursion relation for the partition functionZN(x1, x2) which is the
2D extension of equation (2.3):

ZN+1(x1, x2) = 1x1,x2ZN(x1, x2)+ δx1,1(e
w(1) − 1)1x2ZN(x1+ 1, x2)

+δx2,1(e
w(1) − 1)1x1ZN(x1, x2+ 1)

+δx1,1δx2,1(e
2w(2) − 2ew(1) + 1)ZN(x1+ 1, x2+ 1) (2.9)

where

1xi9(xi) ≡ 9(xi − 1)+9(xi + 1) (i = {1, 2}) (2.10)

and

1x1,x29(x1, x2) ≡ 9(x1− 1, x2− 1)+9(x1− 1, x2+ 1)

+9(x1+ 1, x2− 1)+9(x1+ 1, x2+ 1). (2.11)

The equation (2.9) is valid forx1 > 1, x2 > 1 and should be completed by the boundary
and initial conditions,{
ZN(x1 = 0, x2 > 1) = ZN(x1 > 1, x2 = 0) = ZN(x1 = 0, x2 = 0) = 0

ZN=0(x1, x2) = δx1,1δx2,1.
(2.12)

We search the solution of equations (2.9)–(2.12) in the form of the following ansatz:

Z(x1, x2) = ZN(x1, x2)+WN(x1, x2). (2.13)

The functionZN(x1, x2) = ZN(x1) ZN(x2) is the product of two independent 1D
functions, each of them satisfying equation (2.3). Thus, forZN(x1, x2) we have the recursion
relation,

ZN+1(x1, x2) = 1x1,x2ZN(x1, x2)+ δx1,1(e
w(1) − 1)1x2ZN(x1+ 1, x2)

+δx2,1(e
w(1) − 1)1x1ZN(x1, x2+ 1)

+δx1,1δx2,1(e
w(1) − 1)2ZN(x1+ 1, x2+ 1) (2.14)

which is analogous to (2.9) but has an inproper Boltzmann weight at the ‘main corner’ point
(x1 = 1, x2 = 1).

In order to compensate the difference in the Boltzman weight at the pont (x1 = 1, x2 = 1)
we add to the functionZN(x1, x2) the nonmultiplicative partWN(x1, x2) describing the
‘absorption at themain corner’. This function is defined by the recursion relations,
WN+1(x1, x2) = 1x1,x2WN(x1, x2)+ δx1,1δx2,1γ2WN(x1+ 1, x2+ 1)

WN(x1 = 1, x2 > 2) = WN(x1 > 2, x2 = 1) = WN(x1 6 0, x2 6 0) = 0

WN=0(x1, x2) = δx1,1δx2,1

(2.15)

where the extra ‘main corner’ Boltzmann weightγ2 is chosen to reproduce the right
Boltzmann weightβ(2) at the point(x1 = 1, x2 = 1) (see equations (2.8) and figure 3)

γ2 = e2w(2) − e2w(1) − 2. (2.16)
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Figure 1. The lattice(x1 > 1, x2 > 1) with (a) zero’s boundary conditions; (b) allowed moves.

Figure 2. (a) The auxiliary 2D lattice used in the computation of the nonmultiplicative
contributionWN(x1, x2)—see equation (2.15); (b) the same lattice as in (a) but with another
boundary condition at the ‘main corner’.

Figure 3. Computation of the 2D extra Boltzmann weight at the ‘main corner’.

It is easy to check the validity of our choice ofγ2,

(γ2+ 1)︸ ︷︷ ︸
WN(x1,x2)

+ (ew(1) − 1)2+ 2ew(1)︸ ︷︷ ︸
ZN(x1)ZN (x2)

= e2w(2) ≡ β(2). (2.17)

The equations (2.15) correspond to the situation shown in figure 2(a), where we marked
the point at which the Boltzmann weightγ2 is located by the symbol• .

As stated in section 1 we are interested in the determination of the phase transition
point of the functionZN(x1, x2) (for n = 2 andN � 1). Generalizing the arguments
of section 2.1 it is easy to verify that the transition to the localized state occurs at the
divergence point of the functionZ(x1 = 2, x2 = 2, s) (as in equation (2.6)):

ZN→∞(x1 = 2, x2 = 2) = 1

π2

∫ π

0

∫ π

0
dk1 dk2 sin 2k1 sin 2k2 Z̃(k1, k2, s → 1) (2.18)
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where

ZN(x1, x2) = 4N ZN(x1, x2) WN(x1, x2) = 4NWN(x1, x2) (2.19)

and

Z̃(k1, k2, s) =
∞∑
N=0

sN
∞∑
x1=0

∞∑
x2=0

sinx1k1 sinx2k2 ZN(x1, x2)

(cf equation (2.4)).
Substituting the ansatz (2.13) into (2.18) we see that the divergence of the function

ZN→∞(x1 = 2, x2 = 2) is determined:
• either by the divergence of the ‘one-particle’ functionZN→∞(xi = 2) (i = {1, 2})
• or by the divergence of the ‘main corner’ partWN→∞(x1 = 2, x2 = 2)

and everything depends on which of these two functions diverges first in the phase space
of parameters{w(1), w(2)} (recall that according to equation (1.2) we have a restriction
06 w(1) 6 w(2)).

The behaviour of the functionZN(xi) (i = {1, 2}) has been well studied in section 2.1;
so, let us concentrate our efforts on the solution of equations (2.15).

2.2.2. Phase transition point of the ‘main corner’ partWN(x1, x2). The partition function
W(N) ≡ WN(x1 = 1, x2 = 1) whereN is even can be written in the following form. Let
us introduce the auxiliary functions:

(1) �(N) ≡ �N(x1 = 1, x2 = 1)—the number of closed paths, starting at the point
(x1 = 1, x2 = 1), finishing at the same point afterN stepsfor the first timeand satisfying
the boundary conditions in figure 2(a);

(2) V (N) ≡ VN(x1 = 2, x2 = 2)—the number ofN -step closed paths, starting and
finishing at the point (x1 = 2, x2 = 2) and satisfying the boundary conditions in figure 2(b).

The following identity can be derived immediately:

�(N + 2) = V (N) ≡ 4NV(N). (2.20)

The functionW(N) admits the representation

W(N) =
N/2∑
k=1

(β(2))k
∑

{N1+···+Nk=N}

k∏
i=1

�(Ni) (2.21)

where the upper limit in the first sum can be set to infinity because the condition
N1 + · · · + Nk = N ensures the right cut of the sum;β(2) = γ2 + 1 is the Boltzmann
weight of the potential well at the origin.

Using the Kroneckerδ-function:

δ(x) = 1

2π i

∮
dz

z1+x =
{

0 x 6= 0

1 x = 0

wherex = N −N1− · · · −Nk, we may rewrite equation (2.21) as follows:

W(N) =
∞∑
k=0

(β(2))k
1

2π i

∮
dz z−N−1

∞∑
N1=2

. . .

∞∑
Nk=2

zN1+···+Nk
k∏
i=1

�(Ni)

= 1

2π i

∮
dz z−N−1 1

1− β(2)∑∞N=2 z
N�(N)

. (2.22)

The appearance of the pole in the last expression signals the separation of the localized
mode from the continuous part of the spectrum corresponding to the functionW(N) (cf
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(2.3) and equations in appendix A). Using the identity (2.20) we obtain the equation on the
transition point (forN →∞):

β(2)cr = lim
z→4

1∑∞
N=0

(
z
4

)N V(N) ≡ lim
s→1

1∑∞
N=0 s

NV(N)
(2.23)

wheres = z
4.

The functionVN(x1, x2) satisfies the recursion relation in the absence of any potentials,

VN+1(x1, x2) = 1x1,x2VN(x1, x2) (2.24)

with the boundary and initial conditions shown in figure 2(b):{
VN(x1 = 1, x2 > 2) = VN(x1 > 2, x2 = 1) = VN(x1 = 1, x2 = 1) = 0

VN=0(x1, x2) = δx1,2δx2,2.
(2.25)

Using the Laplace and the 2D sin-Fourier transforms and performing the shift in
equation (2.24){x1 → x1 − 1, x2 → x2 − 1} we arrive at the standard equation for the
functionVN(k1, k2, s),

VN(k1, k2, s) = sink1 sink2

1− s cosk1 cosk2
. (2.26)

Thus, we obtain the final expression,
∞∑
N=0

sNV(N) = 1

π2

∫ π

0

∫ π

0
dk1 dk2

sin2 k1 sin2 k2

1− s cosk1 cosk2
. (2.27)

Evaluating the last integral at the points = 1 we obtain the following numerical value for
the ‘2D main corner’ transition point,

β(2)cr ≡ γ2+ 1= π

4− π ≈ 3.660. (2.28)

2.2.3. Phase diagram for two-particle system.Collecting the results of the sections 2.2.1
and 2.2.2 we conclude that the transition from the delocalized to the absorbed state is
determined:
• either by the equationβ(1)cr ≡ ewcr(1) = 2 (the ‘single-chain’ contribution);
• or by the equationβ(2)cr = γ2+1, i.e. e2w(2)−e2w(1)−1= π

4−π (the two-particle ‘main
corner’ contribution).

The complete phase diagram is drawn in figure 4. Forw(1) > ln 2 the influence of the
potentialw(2) disappears, while for 0< w(1) < ln 2 ≈ 0.693 the ‘induced’ localization
can occur for

w(2) >
1

2
ln

(
e2w(1) + 4

4− π
)

just due to the simultaneous interactions between two random walks at the origin.
It is worthwhile to mention that the ‘collective’ localization can appear even for

w(1) < 0. Suppose, for example, we have the situation:

w(1) = −∞ w(2) > 0

i.e. each particular chain cannot visit the origin, but there is an energy gain for two chains
to be trapped at the origin simultaneously. In this case for

w(2) > wcr(2) = 1

2
ln

4

4− π ≈ 0.769

the chains become localized.
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Figure 4. The phase diagram for the two-particle catalytic absorption model.

3. Phase transitions in catalytic absorption model forn > 2

3.1. Solution forn = 3

The equation for the three-particle partition functionZN(x1, x2, x3) reads

ZN(x1, x2, x3) = 1x1,x2,x3ZN(x1, x2, x3)+ δx1,1(e
w(1) − 1)1x2,x3ZN(x1+ 1, x2, x3)

+δx2,1(e
w(1) − 1)1x1,x3ZN(x1, x2+ 1, x3)

+δx3,1(e
w(1) − 1)1x1,x2ZN(x1, x2, x3+ 1)

+δx1,1δx2,1(e
2w(2) − 2ew(1) + 1)1x3ZN(x1+ 1, x2+ 1, x3)

+δx1,1δx3,1(e
2w(2) − 2ew(1) + 1)1x2ZN(x1+ 1, x2, x3+ 1)

+δx2,1δx3,1(e
2w(2) − 2ew(1) + 1)1x1ZN(x1, x2+ 1, x3+ 1)

+δx1,1δx2,1δx3,1(e
3w(3) − 3e2w(2) + 3ew(1) − 1)ZN(x1+ 1, x2+ 1, x3+ 1).

(3.1)

Generalizing the ansatz (2.13) to the three-dimensional (3D) case we search the solution
of equation (3.1) in the form

ZN(x1, x2, x3) = WN(x1, x2)ZN(x3)+WN(x1, x3)ZN(x2)

+WN(x2, x3)ZN(x1)+WN(x1, x2, x3) (3.2)

where:
(a) the functionsZN(xi) for i ∈ [1, 3] are defined by equation (2.3);
(b) the functionsWN(xi, xj ) (i 6= j ; {i, j} ∈ [1, 3]) are defined by the recursion relations

(2.15) with the replacement

γ2→ γ 2 = e2w(2) − 2ew(1) − 1 (3.3)
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Figure 5. Computation of the Boltzmann weightsγ 2 andγ3.

(c) the functionWN(x1, x2, x3) is determined as follows:

WN+1(x1, x2, x3) = 1x1,x2,x3WN(x1, x2, x3)+ δx1,1δx2,1δx3,1γ3

×WN(x1+ 1, x2+ 1, x3+ 1)

WN(x1 = 1, x2 > 2, x3 > 2) = WN(x1 > 2, x2 = 1, x3 > 2)

= WN(x1 > 2, x2 > 2, x3 = 1) = 0

WN(x1 = 1, x2 = 1, x3 > 2) = WN(x1 = 1, x2 > 2, x3 = 1)

= WN(x1 > 2, x2 = 1, x3 = 1) = 0

WN=0(x1, x2) = δx1,1δx2,1

(3.4)

where

γ3 = e3w(3) − 3e2w(2)ew(1) + 6e2w(2) − 6ew(1) − 4. (3.5)

Let us check the consistency of equations (3.3)–(3.5) (see figure 5):{
(γ 2+ 1)+ 2ew(1) = e2w(2)

(γ3+ 1)+ 3ew(1) + 3e2w(2) + (γ 2+ 1)(ew(1) − 1) = e3w(3).
(3.6)

The arguments of the section 2.2.2 can be easily extended to the 3D case. Skipping the
intermediate computations we present the final result for the value of the Boltzmann weight
at the ‘3D main corner’ transition point,

β(3)cr =
(

1

π3

∫ π

0

∫ π

0

∫ π

0
dk1 dk2 dk3

sin2 k1 sin2 k2 sin2 k3

1− cosk1 cosk2 cosk3

)−1

≈ 7.856. (3.7)

The localization phase transition is now determined:
• either by the equationβ(1)cr = 2, i.e.

w(1)cr = ln 2 (3.8)

(the one-particle contribution);
• or by the equationβ(2)cr = γ 2+ 1= π

4−π , i.e.

w(2)cr =
1

2
ln

(
2ew(1) + π

4− π
)

(3.9)
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(the two-particle contribution);
• or by the equationβ(3)cr = γ3+ 1= 7.856, i.e.

wcr(3) = 1
3 ln(3e2w(2)ew(1) − 6e2w(1) + 6ew(1) + 10.856) (3.10)

(the three-particle ‘main corner’ contribution).

3.2. Solution for arbitraryn

The general ansatz for arbitrary values ofn reads†

ZN(x1, x2, . . . , xn) = WN(x1, . . . , xn−1)ZN(xn)+ all permutations

+WN(x1, . . . , xn−2)WN(xn−1, xn)+ all permutations

+WN(x1, . . . , xn−3)WN(xn−2, xn−1, xn)+ all permutations

+ · · · +WN(x1, . . . , x n
2
)WN(x n

2+1, . . . , xn)+ all permutations

+WN(x1, . . . , xn) (3.11)

where
WN+1(x1, . . . , xj ) = 1x1,...,xjWN(x1, . . . , xj )

+δx1,1 . . . δxj ,1γjWN(x1+ 1, . . . , xj + 1) (26 j 6 n− 1)

WN = 0 in all subsections containing the point (x1 = 1, . . . xj = 1)

WN=0(x1, . . . , xj ) = δx1,1 . . . δxj ,1

(3.12)

and

(γj + 1)+ C1
j e(j−1)w(j−1) + C2

j e(j−2)w(j−2) + · · · = ejw(j). (3.13)

Equations (3.11)–(3.13) produce the following relation for the Boltzmann weight at the
‘n-dimensional main corner’,γn:

(γn + 1)+ C1
n−1(γ 1+ γ n−1)+ C2

n−1(γ 2+ γ n−2)

+ · · · + (ew(1) − 1)γ n−1+ γ 2γ n−2+ · · · + γ n
2
γ n

2+1 = enw(n) (3.14)

cf (3.6).
The singular points of the functionsZN(xi), WN(xi, xj ), . . . , in the n-particle model

are located at

β(j)cr =
{
γj + 1 for 16 j 6 n

2

γn for j = n− 1
(3.15)

where each value ofβ(crj) is defined by the equation

β(j)cr =
(

1

πj

∫ π

0
· · ·
∫ π

0
dk1 . . .dkj

sin2 k1 . . . sin2 kj

1− cosk1 . . . coskj

)−1

(3.16)

andγj are the recursive solutions of equation (3.14).

† This equation is written for even values ofn, the generalization to the odd values ofn is very straightforward.
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3.3. Phase transition in then-particle system forn� 1

Now we are in a position to give the answer to the question raised in section 1: ‘what
should be the critical shape of the functionw(n) (for n � 1) to have the simultaneous
collectiven-particle localization in the system?’ For simplicity later on we supposen to be
even. The answer is very straightforward.

The condition on the critical shapewcr(n) providing the jointn-particle localization is
defined by settingw(n) ≡ wcr(n) in the equations (3.15)–(3.16).

The approximate evaluation of the integral (3.16) forn � 1 gives us (with the
exponential accuracy—see appendix B for details)

β(n)cr = exp

(
3

2
n ln n− 1

2
n ln

πe3

54
+O(ln n)

)
. (3.17)

We drop in equation (3.16) all terms growing withn→∞ slower than exp(constantn).
Substituting (3.13) into (3.16) and taking into account that all Boltzmann weights are

positive, it is easy to conclude that forn� 1

enwcr(n) = e
3
2n ln n (3.18)

where we kept the leading asymptotics (forn→∞) only. Thus, we arrive at the following
final conclusion.
• If the functionw(n) grows faster thanwcr(n) = 3

2 ln n then all n � 1 chains are
localized simultaneouslyin the point well located at the originx = 1 of the halflineZ+.

Recall thatw(n) is the depth of the potential well for each chain bead localized at the
origin. Thus the ‘integral’ critical depth,Ucr(n) = nwcr(n) per cluster ofn particles has the
following asymptotic behaviour,Ucr(n) = 3

2n ln n.

4. Discussion: Connection with the random heteropolymer absorption problem

The above mentioned problem has a direct application to the old problem of random
copolymer absorption at the point well. Namely, consider a polymer chain onZ+ with
a point well located at the origin and suppose that the well depth depends on the current
‘time’ (i.e. on the chain bead’s number) located at the pointx = 0. The partition function
2N of such a system can be written as a sum over all available paths,

2N(xN) = N
∑

{x1,...,xN−1}

N∏
j=1

{g(|xj − xj−1|)eUj (xj )} (4.1)

whereN is the normalization constant,g(|xj − xj−1|) is the local transition matrix and the
potentialUj(xj ) is a random variable ofj . Write Uj(xj ) as follows:

Uj(xj ) =


1+ σj
2

ε1+ 1− σj
2

ε2 for xj = 0

0 for xj > 0
(4.2)

whereε1,2 are some positive constants andσj is the random variable defined as follows:

σj =
{
+1 with the probabilityp

−1 with the probability 1− p.



Localization in a catalytic absorption model 1977

Write (4.1) in the form of recursion relations:
2N+1(x) = 2N(x + 1)+2N(x − 1) (x > 1)

2N+1(x) = eUN2N(x + 1) (x = 0)

2N(x) = 0 (x < 0)

2N=0(x) = δx,0.

(4.3)

Performing the shiftx → x + 1 (cf (2.3)) rewrite (4.3) as follows:
2N+1(x) = 1x2N(x)+ (eUN − 1)δx,12N(x + 1) (x > 1)

2N(x) = 0 (x = 0)

2N=0(x) = δx,1
(4.4)

where1x is defined in (2.10).
The partition function2N(x) is a random variable which depends on the quenched

random pattern of realizations of the potentialUj (j ∈ [1, N ]). To find the reliable
thermodynamic quantity in quenched ensembles we have to average the free energy ln2N

over the distribution of all random sequences{σ1, σ2, . . . , σN }. We realize the corresponding
computations in the framework of the replica approach.

Averaging thens power of the partition function
〈
2n
N(x)

〉 = 8N(x1, . . . , xn), we obtain:

8N+1(x1, . . . , xn) = 1x1,...,xn8N(x1, . . . , xn)

+〈eUN − 1〉
n∑
i=1

δxi ,11x1,...,6xi ,...,xn8N(x1, . . . , xi−1, xi + 1, xi+1, . . . , xn)

+〈(eUN − 1)2〉
n∑
i>j

δxi ,1δxj ,11x1,..., 6xi ,..., 6xj ,...,xn

×8N(x1, . . . , xi−1, xi + 1, xi+1, . . . , xj−1, xj + 1, xj+1, . . . , xn)

+ · · · + 〈(eUN − 1)n〉δx1,1 . . . δxn,18N(x1+ 1, . . . , xn + 1) (4.5)

where the operator1x1,...xj is thej -dimensional discrete Laplacian—cf (2.9)–(2.11) and

〈(eUN − 1)j 〉 = p(eε1 − 1)j + (1− p)(eε2 − 1)j = 〈γj 〉. (4.6)

The solution of equation (4.5) reads (cf (3.11)):

8N(x1, . . . , xn) = 8N(x1, . . . , xn−1)ZN(xn)+ all permutations

+8N(x1, . . . , xn−2)8N(xn−1, xn)+ all permutations

+ · · · +8N(x1, . . . , x n
2
)8N(x n

2+1, . . . , xn)+ all permutations

+WN(x1, . . . , xn) (4.7)

where the functions8N(x1, . . . , xk) satisfy the master equations (k ∈ [1, n])
8N(x1, . . . , xj ) = 1x1,...xj8N(x1, . . . , xj )

+δx1,1 . . . δxj ,1γj8N(x1+ 1, . . . , xj + 1) {x1, . . . xj } > 1

8N = 0 in all subspaces containing the point (x1 = 1, . . . , xk = 1)

8N=0(x1, . . . xn) = δx1,1 . . . δxn,1.

(4.8)

Using the results of the previous sections one can conclude that the averaged moments
of the quenched heteropolymer partition function,〈2N 〉, 〈22

N 〉, . . . , 〈2n
N 〉 exhibit singular

behaviour at the set of points being the solutions of equation (3.15) whereβ(1)cr = 2 (see
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equation (2.7)) andβ(j)cr for j ∈ [2, n] is given by equation (3.16). Recall that we restrict
ourselves to the case:ε1 > 0 andε2 > 0.

The ‘true critical point’ of the localization transition in all averaged moments of the
partition function2N (in the thermodynamic limitN → ∞) can be obtained using the
following simple procedure. We fix some arbitrary valueε2 and find theminimal value
εcr

1 (ε2, j) among all solutions of equation (3.15) forj ∈ [1, n].
It is easy to check that for all 16 j 6 n and any arbitrary choice ofε2, the minimal

value εcr
1 corresponds just toj = 1. It means thatall moments of the random copolymer

partition function,2j

N , averaged over the quenched disorder in monomer types diverge at
the same point as the ‘one-particle’ part (i.e. the ‘annealed’ copolymer partition function),
〈2N 〉.

Of course, our consideration has an obvious crucial shortcoming connected with the
fact that the replica approach presented above does not allow us to properly take the limit
n → 0. Thus, the computations performed in section 4 cannot be regarded as a proof of
the conjecture that the phase transition points of copolymers with quenched and annealed
chemical sequences coincide. However, the consistency of our investigation with other
speculations on that subject [8, 17] at least gives hope that our conclusion is correct.
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Appendix A

The partition functionZN(x = 2) (see equation (2.5)) can be restored by means of the
Mellin transform

ZN(x = 2) = 1

2π i

∮
dsZ(s, x = 2)s−N−1. (A.1)

On the complex plane the functionZ(s) has a square-root branching point ats = 1 and a
cut along ]1,+∞[. The functionZ(s) has a simple pole at the points = s0 provided the
equation (2.7) holds,

1− s(ew − 1)
1

π

∫ π

0
dk

sink sin 2k

1− s cosk
= 0. (A.2)

If there exists a pole ats0, it gives the main contribution to the integral (A.1) and we have

ZN(x = 2) = sN0 ResZ(s, x = 2)|s=s0<1.

This situation is called the ground-state dominance. The chain is in the localized state and
the free energy of the chain is given byF(N)− F0(N) = N ln(s0).

From (A.2) we can conclude that the localization transition appears just atw = wcr,
where

ewcr = 1+ π

s0
∫ π

0 dk sink sin 2k
1−s0 cosk

= 1

s0

(
1−

√
1− s2

0

)2 ∣∣∣∣
s0→1

= 2. (A.3)
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Equation (A.3) gives the asymptotic solution of equation (A.2). Expanding
equation (A.2) in power series ofδ = √1− s near the branching points0 = 1 up to
the first leading term, we obtain

ew ≈ ewcr − 2
√

2
√

1− s0. (A.4)

Hence,

s0 ≈ 1− 1
8(e

wcr − ew)2. (A.5)

Thus, the phase transition is of second order because

lim
N→∞

1

N
[F(w − wcr|N)− F0(N)] ∼ ln(s0) ∼ (w − wcr)

2. (A.6)

Whenw 6 wcr we have

lim
N→∞

1

N
[F(w|N)− F0(N)] = 0.

Then the spectrum of equation (2.3) is continuous and the chain is delocalized.

Appendix B

Let us estimate the value of the integralIn = (β(n))−1 (see equation (3.7)) forn� 1

In = 1

πn

∫ π

0
. . .

∫ π

0
dk1 . . .dkn

sin2 k1 . . . sin2 kn

1− cosk1 . . . coskn
. (B.1)

Changing the variableski = qπ and expanding the nominator and denominator of the
fraction in (B.1) up to the first nonvanishing term, we obtain

In ≈ 1

2n−1

∫ 1

−1
. . .

∫ 1

−1
dk1 . . .dkn

k2
1 . . . k

2
n

k2
1 + · · · + k2

n

. (B.2)

Passing to then-dimensional spherical coordinate system we arrive, after simple algebra, at
the following expression:

In = (
√
π)n−1

3n− 2

n−1∏
l=1

{
1

9l2− 1

0
(

3l
2

)
0
(

3l−1
2

)} . (B.3)

In the limit n � 1 we find the asymptotic expression of the functionIn with the
exponential accuracy,

In = exp

(
−3

2
n ln n+ 1

2
n ln

πe3

54
+O(ln n)

)
. (B.4)

This asymptotic expression has been used in the derivation of equation (3.18).
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